tf::cudaFlow class

class to create a cudaFlow task dependency graph

A cudaFlow is a high-level interface over CUDA Graph to perform GPU operations using the task dependency graph model. The class provides a set of methods for creating and launch different tasks on one or multiple CUDA devices, for instance, kernel tasks, data transfer tasks, and memory operation tasks. The following example creates a cudaFlow of two kernel tasks, task1 and task2, where task1 runs before task2.

tf::Taskflow taskflow;
tf::Executor executor;

taskflow.emplace([&](tf::cudaFlow& cf){
  // create two kernel tasks
  tf::cudaTask task1 = cf.kernel(grid1, block1, shm_size1, kernel1, args1);
  tf::cudaTask task2 = cf.kernel(grid2, block2, shm_size2, kernel2, args2);

  // kernel1 runs before kernel2
  task1.precede(task2);
});

executor.run(taskflow).wait();

A cudaFlow is a task (tf::Task) created from tf::Taskflow and will be run by one worker thread in the executor. That is, the callable that describes a cudaFlow will be executed sequentially. Inside a cudaFlow task, different GPU tasks (tf::cudaTask) may run in parallel scheduled by the CUDA runtime.

Please refer to GPU Tasking (cudaFlow) for details.

Constructors, destructors, conversion operators

cudaFlow()
constructs a standalone cudaFlow
~cudaFlow()
destroys the cudaFlow and its associated native CUDA graph and executable graph

Public functions

auto empty() const -> bool
queries the emptiness of the graph
auto num_tasks() const -> size_t
queries the number of tasks
void clear()
clears the cudaFlow object
void dump(std::ostream& os) const
dumps the cudaFlow graph into a DOT format through an output stream
void dump_native_graph(std::ostream& os) const
dumps the native CUDA graph into a DOT format through an output stream
auto noop() -> cudaTask
creates a no-operation task
template<typename C>
auto host(C&& callable) -> cudaTask
creates a host task that runs a callable on the host
template<typename C>
void host(cudaTask task, C&& callable)
updates parameters of a host task
template<typename F, typename... ArgsT>
auto kernel(dim3 g, dim3 b, size_t s, F f, ArgsT && ... args) -> cudaTask
creates a kernel task
template<typename F, typename... ArgsT>
void kernel(cudaTask task, dim3 g, dim3 b, size_t shm, F f, ArgsT && ... args)
updates parameters of a kernel task
auto memset(void* dst, int v, size_t count) -> cudaTask
creates a memset task that fills untyped data with a byte value
void memset(cudaTask task, void* dst, int ch, size_t count)
updates parameters of a memset task
auto memcpy(void* tgt, const void* src, size_t bytes) -> cudaTask
creates a memcpy task that copies untyped data in bytes
void memcpy(cudaTask task, void* tgt, const void* src, size_t bytes)
updates parameters of a memcpy task
template<typename T, std::enable_if_t<is_pod_v<T> && (sizeof(T)==1||sizeof(T)==2||sizeof(T)==4), void>* = nullptr>
auto zero(T* dst, size_t count) -> cudaTask
creates a memset task that sets a typed memory block to zero
template<typename T, std::enable_if_t<is_pod_v<T> && (sizeof(T)==1||sizeof(T)==2||sizeof(T)==4), void>* = nullptr>
void zero(cudaTask task, T* dst, size_t count)
updates parameters of a memset task to a zero task
template<typename T, std::enable_if_t<is_pod_v<T> && (sizeof(T)==1||sizeof(T)==2||sizeof(T)==4), void>* = nullptr>
auto fill(T* dst, T value, size_t count) -> cudaTask
creates a memset task that fills a typed memory block with a value
template<typename T, std::enable_if_t<is_pod_v<T> && (sizeof(T)==1||sizeof(T)==2||sizeof(T)==4), void>* = nullptr>
void fill(cudaTask task, T* dst, T value, size_t count)
updates parameters of a memset task to a fill task
template<typename T, std::enable_if_t<!std::is_same_v<T, void>, void>* = nullptr>
auto copy(T* tgt, const T* src, size_t num) -> cudaTask
creates a memcopy task that copies typed data
template<typename T, std::enable_if_t<!std::is_same_v<T, void>, void>* = nullptr>
void copy(cudaTask task, T* tgt, const T* src, size_t num)
updates parameters of a memcpy task to a copy task
template<typename P>
void offload_until(P&& predicate)
offloads the cudaFlow onto a GPU and repeatedly runs it until the predicate becomes true
void offload_n(size_t N)
offloads the cudaFlow and executes it by the given times
void offload()
offloads the cudaFlow and executes it once
template<typename C>
auto single_task(C c) -> cudaTask
runs a callable with only a single kernel thread
template<typename C>
void single_task(cudaTask task, C c)
updates a single-threaded kernel task
template<typename I, typename C>
auto for_each(I first, I last, C callable) -> cudaTask
applies a callable to each dereferenced element of the data array
template<typename I, typename C>
void for_each(cudaTask task, I first, I last, C callable)
updates parameters of a kernel task created from tf::cudaFlow::for_each
template<typename I, typename C>
auto for_each_index(I first, I last, I step, C callable) -> cudaTask
applies a callable to each index in the range with the step size
template<typename I, typename C>
void for_each_index(cudaTask task, I first, I last, I step, C callable)
updates parameters of a kernel task created from tf::cudaFlow::for_each_index
template<typename I, typename O, typename C>
auto transform(I first, I last, O output, C op) -> cudaTask
applies a callable to a source range and stores the result in a target range
template<typename I, typename O, typename C>
void transform(cudaTask task, I first, I last, O output, C c)
updates parameters of a kernel task created from tf::cudaFlow::transform
template<typename I1, typename I2, typename O, typename C>
auto transform(I1 first1, I1 last1, I2 first2, O output, C op) -> cudaTask
creates a task to perform parallel transforms over two ranges of items
template<typename I1, typename I2, typename O, typename C>
void transform(cudaTask task, I1 first1, I1 last1, I2 first2, O output, C c)
updates parameters of a kernel task created from tf::cudaFlow::transform
template<typename I, typename T, typename B>
auto reduce(I first, I last, T* result, B bop) -> cudaTask
performs parallel reduction over a range of items
template<typename I, typename T, typename C>
void reduce(cudaTask task, I first, I last, T* result, C op)
updates parameters of a kernel task created from tf::cudaFlow::reduce
template<typename I, typename T, typename B>
auto uninitialized_reduce(I first, I last, T* result, B bop) -> cudaTask
similar to tf::cudaFlow::reduce but does not assume any initial value to reduce
template<typename I, typename T, typename C>
void uninitialized_reduce(cudaTask task, I first, I last, T* result, C op)
updates parameters of a kernel task created from tf::cudaFlow::uninitialized_reduce
template<typename I, typename T, typename B, typename U>
auto transform_reduce(I first, I last, T* result, B bop, U uop) -> cudaTask
performs parallel reduction over a range of transformed items
template<typename I, typename T, typename B, typename U>
void transform_reduce(cudaTask, I first, I last, T* result, B bop, U uop)
updates parameters of a kernel task created from tf::cudaFlow::transform_reduce
template<typename I, typename T, typename B, typename U>
auto transform_uninitialized_reduce(I first, I last, T* result, B bop, U uop) -> cudaTask
similar to tf::cudaFlow::transform_reduce but does not assume any initial value to reduce
template<typename I, typename T, typename B, typename U>
void transform_uninitialized_reduce(cudaTask task, I first, I last, T* result, B bop, U uop)
updates parameters of a kernel task created from tf::cudaFlow::transform_uninitialized_reduce
template<typename I, typename O, typename C>
auto inclusive_scan(I first, I last, O output, C op) -> cudaTask
creates a task to perform parallel inclusive scan over a range of items
template<typename I, typename O, typename C>
void inclusive_scan(cudaTask task, I first, I last, O output, C op)
updates the parameters of a task created from tf::cudaFlow::inclusive_scan
template<typename I, typename O, typename C>
auto exclusive_scan(I first, I last, O output, C op) -> cudaTask
similar to cudaFlow::inclusive_scan but excludes the first value
template<typename I, typename O, typename C>
void exclusive_scan(cudaTask task, I first, I last, O output, C op)
updates the parameters of a task created from tf::cudaFlow::exclusive_scan
template<typename I, typename O, typename B, typename U>
auto transform_inclusive_scan(I first, I last, O output, B bop, U uop) -> cudaTask
creates a task to perform parallel inclusive scan over a range of transformed items
template<typename I, typename O, typename B, typename U>
void transform_inclusive_scan(cudaTask task, I first, I last, O output, B bop, U uop)
updates the parameters of a task created from tf::cudaFlow::transform_inclusive_scan
template<typename I, typename O, typename B, typename U>
auto transform_exclusive_scan(I first, I last, O output, B bop, U uop) -> cudaTask
similar to cudaFlow::transform_inclusive_scan but excludes the first value
template<typename I, typename O, typename B, typename U>
void transform_exclusive_scan(cudaTask task, I first, I last, O output, B bop, U uop)
updates the parameters of a task created from tf::cudaFlow::transform_exclusive_scan
template<typename A, typename B, typename C, typename Comp>
auto merge(A a_first, A a_last, B b_first, B b_last, C c_first, Comp comp) -> cudaTask
creates a task to perform parallel merge on two sorted arrays
template<typename A, typename B, typename C, typename Comp>
void merge(cudaTask task, A a_first, A a_last, B b_first, B b_last, C c_first, Comp comp)
updates the parameters of a task created from tf::cudaFlow::merge
template<typename I, typename C>
auto sort(I first, I last, C comp) -> cudaTask
creates a task to perform parallel sort an array
template<typename I, typename C>
void sort(cudaTask task, I first, I last, C comp)
updates the parameters of the task created from tf::cudaFlow::sort
template<typename K_it, typename V_it, typename C>
auto sort_by_key(K_it k_first, K_it k_last, V_it v_first, C comp) -> cudaTask
creates kernels that sort the given array
template<typename K_it, typename V_it, typename C>
void sort_by_key(cudaTask task, K_it k_first, K_it k_last, V_it v_first, C comp)
updates the parameters of a task created from tf::cudaFlow::sort_by_key
template<typename a_keys_it, typename a_vals_it, typename b_keys_it, typename b_vals_it, typename c_keys_it, typename c_vals_it, typename C>
auto merge_by_key(a_keys_it a_keys_first, a_keys_it a_keys_last, a_vals_it a_vals_first, b_keys_it b_keys_first, b_keys_it b_keys_last, b_vals_it b_vals_first, c_keys_it c_keys_first, c_vals_it c_vals_first, C comp) -> cudaTask
creates a task to perform parallel key-value merge
template<typename a_keys_it, typename a_vals_it, typename b_keys_it, typename b_vals_it, typename c_keys_it, typename c_vals_it, typename C>
void merge_by_key(cudaTask task, a_keys_it a_keys_first, a_keys_it a_keys_last, a_vals_it a_vals_first, b_keys_it b_keys_first, b_keys_it b_keys_last, b_vals_it b_vals_first, c_keys_it c_keys_first, c_vals_it c_vals_first, C comp)
updates the parameters of a task created from tf::cudaFlow::merge_by_key
template<typename I, typename U>
auto find_if(I first, I last, unsigned* idx, U op) -> cudaTask
creates a task to find the index of the first element in a range
template<typename I, typename U>
void find_if(cudaTask task, I first, I last, unsigned* idx, U op)
updates the parameters of the task created from tf::cudaFlow::find_if
template<typename I, typename O>
auto min_element(I first, I last, unsigned* idx, O op) -> cudaTask
finds the index of the minimum element in a range
template<typename I, typename O>
void min_element(cudaTask task, I first, I last, unsigned* idx, O op)
updates the parameters of the task created from tf::cudaFlow::min_element
template<typename I, typename O>
auto max_element(I first, I last, unsigned* idx, O op) -> cudaTask
finds the index of the maximum element in a range
template<typename I, typename O>
void max_element(cudaTask task, I first, I last, unsigned* idx, O op)
updates the parameters of the task created from tf::cudaFlow::max_element
template<typename C>
auto capture(C&& callable) -> cudaTask
constructs a subflow graph through tf::cudaFlowCapturer
template<typename C>
void capture(cudaTask task, C callable)
updates the captured child graph

Function documentation

tf::cudaFlow::cudaFlow()

constructs a standalone cudaFlow

A standalone cudaFlow does not go through any taskflow and can be run by the caller thread using explicit offload methods (e.g., tf::cudaFlow::offload).

void tf::cudaFlow::dump_native_graph(std::ostream& os) const

dumps the native CUDA graph into a DOT format through an output stream

The native CUDA graph may be different from the upper-level cudaFlow graph when flow capture is involved.

cudaTask tf::cudaFlow::noop()

creates a no-operation task

Returns a tf::cudaTask handle

An empty node performs no operation during execution, but can be used for transitive ordering. For example, a phased execution graph with 2 groups of n nodes with a barrier between them can be represented using an empty node and 2*n dependency edges, rather than no empty node and n^2 dependency edges.

template<typename C>
cudaTask tf::cudaFlow::host(C&& callable)

creates a host task that runs a callable on the host

Template parameters
C callable type
Parameters
callable a callable object with neither arguments nor return (i.e., constructible from std::function<void()>)
Returns a tf::cudaTask handle

A host task can only execute CPU-specific functions and cannot do any CUDA calls (e.g., cudaMalloc).

template<typename C>
void tf::cudaFlow::host(cudaTask task, C&& callable)

updates parameters of a host task

The method is similar to tf::cudaFlow::host but operates on a task of type tf::cudaTaskType::HOST.

template<typename F, typename... ArgsT>
cudaTask tf::cudaFlow::kernel(dim3 g, dim3 b, size_t s, F f, ArgsT && ... args)

creates a kernel task

Template parameters
F kernel function type
ArgsT kernel function parameters type
Parameters
g configured grid
b configured block
s configured shared memory size in bytes
f kernel function
args arguments to forward to the kernel function by copy
Returns a tf::cudaTask handle

template<typename F, typename... ArgsT>
void tf::cudaFlow::kernel(cudaTask task, dim3 g, dim3 b, size_t shm, F f, ArgsT && ... args)

updates parameters of a kernel task

The method is similar to tf::cudaFlow::kernel but operates on a task of type tf::cudaTaskType::KERNEL. The kernel function name must NOT change.

cudaTask tf::cudaFlow::memset(void* dst, int v, size_t count)

creates a memset task that fills untyped data with a byte value

Parameters
dst pointer to the destination device memory area
v value to set for each byte of specified memory
count size in bytes to set
Returns a tf::cudaTask handle

A memset task fills the first count bytes of device memory area pointed by dst with the byte value v.

void tf::cudaFlow::memset(cudaTask task, void* dst, int ch, size_t count)

updates parameters of a memset task

The method is similar to tf::cudaFlow::memset but operates on a task of type tf::cudaTaskType::MEMSET. The source/destination memory may have different address values but must be allocated from the same contexts as the original source/destination memory.

cudaTask tf::cudaFlow::memcpy(void* tgt, const void* src, size_t bytes)

creates a memcpy task that copies untyped data in bytes

Parameters
tgt pointer to the target memory block
src pointer to the source memory block
bytes bytes to copy
Returns a tf::cudaTask handle

A memcpy task transfers bytes of data from a source location to a target location. Direction can be arbitrary among CPUs and GPUs.

void tf::cudaFlow::memcpy(cudaTask task, void* tgt, const void* src, size_t bytes)

updates parameters of a memcpy task

The method is similar to tf::cudaFlow::memcpy but operates on a task of type tf::cudaTaskType::MEMCPY. The source/destination memory may have different address values but must be allocated from the same contexts as the original source/destination memory.

template<typename T, std::enable_if_t<is_pod_v<T> && (sizeof(T)==1||sizeof(T)==2||sizeof(T)==4), void>* = nullptr>
cudaTask tf::cudaFlow::zero(T* dst, size_t count)

creates a memset task that sets a typed memory block to zero

Template parameters
T element type (size of T must be either 1, 2, or 4)
Parameters
dst pointer to the destination device memory area
count number of elements
Returns a tf::cudaTask handle

A zero task zeroes the first count elements of type T in a device memory area pointed by dst.

template<typename T, std::enable_if_t<is_pod_v<T> && (sizeof(T)==1||sizeof(T)==2||sizeof(T)==4), void>* = nullptr>
void tf::cudaFlow::zero(cudaTask task, T* dst, size_t count)

updates parameters of a memset task to a zero task

The method is similar to tf::cudaFlow::zero but operates on a task of type tf::cudaTaskType::MEMSET.

The source/destination memory may have different address values but must be allocated from the same contexts as the original source/destination memory.

template<typename T, std::enable_if_t<is_pod_v<T> && (sizeof(T)==1||sizeof(T)==2||sizeof(T)==4), void>* = nullptr>
cudaTask tf::cudaFlow::fill(T* dst, T value, size_t count)

creates a memset task that fills a typed memory block with a value

Template parameters
T element type (size of T must be either 1, 2, or 4)
Parameters
dst pointer to the destination device memory area
value value to fill for each element of type T
count number of elements
Returns a tf::cudaTask handle

A fill task fills the first count elements of type T with value in a device memory area pointed by dst. The value to fill is interpreted in type T rather than byte.

template<typename T, std::enable_if_t<is_pod_v<T> && (sizeof(T)==1||sizeof(T)==2||sizeof(T)==4), void>* = nullptr>
void tf::cudaFlow::fill(cudaTask task, T* dst, T value, size_t count)

updates parameters of a memset task to a fill task

The method is similar to tf::cudaFlow::fill but operates on a task of type tf::cudaTaskType::MEMSET.

The source/destination memory may have different address values but must be allocated from the same contexts as the original source/destination memory.

template<typename T, std::enable_if_t<!std::is_same_v<T, void>, void>* = nullptr>
cudaTask tf::cudaFlow::copy(T* tgt, const T* src, size_t num)

creates a memcopy task that copies typed data

Template parameters
T element type (non-void)
Parameters
tgt pointer to the target memory block
src pointer to the source memory block
num number of elements to copy
Returns a tf::cudaTask handle

A copy task transfers num*sizeof(T) bytes of data from a source location to a target location. Direction can be arbitrary among CPUs and GPUs.

template<typename T, std::enable_if_t<!std::is_same_v<T, void>, void>* = nullptr>
void tf::cudaFlow::copy(cudaTask task, T* tgt, const T* src, size_t num)

updates parameters of a memcpy task to a copy task

The method is similar to tf::cudaFlow::copy but operates on a task of type tf::cudaTaskType::MEMCPY. The source/destination memory may have different address values but must be allocated from the same contexts as the original source/destination memory.

template<typename P>
void tf::cudaFlow::offload_until(P&& predicate)

offloads the cudaFlow onto a GPU and repeatedly runs it until the predicate becomes true

Template parameters
P predicate type (a binary callable)
Parameters
predicate a binary predicate (returns true for stop)

Immediately offloads the present cudaFlow onto a GPU and repeatedly runs it until the predicate returns true.

An offloaded cudaFlow forces the underlying graph to be instantiated. After the instantiation, you should not modify the graph topology but update node parameters.

By default, if users do not offload the cudaFlow, the executor will offload it once.

void tf::cudaFlow::offload_n(size_t N)

offloads the cudaFlow and executes it by the given times

Parameters
N number of executions

template<typename C>
cudaTask tf::cudaFlow::single_task(C c)

runs a callable with only a single kernel thread

Template parameters
C callable type
Parameters
c callable to run by a single kernel thread
Returns a tf::cudaTask handle

template<typename C>
void tf::cudaFlow::single_task(cudaTask task, C c)

updates a single-threaded kernel task

This method is similar to cudaFlow::single_task but operates on an existing task.

template<typename I, typename C>
cudaTask tf::cudaFlow::for_each(I first, I last, C callable)

applies a callable to each dereferenced element of the data array

Template parameters
I iterator type
C callable type
Parameters
first iterator to the beginning (inclusive)
last iterator to the end (exclusive)
callable a callable object to apply to the dereferenced iterator
Returns a tf::cudaTask handle

This method is equivalent to the parallel execution of the following loop on a GPU:

for(auto itr = first; itr != last; itr++) {
  callable(*itr);
}

template<typename I, typename C>
void tf::cudaFlow::for_each(cudaTask task, I first, I last, C callable)

updates parameters of a kernel task created from tf::cudaFlow::for_each

The type of the iterators and the callable must be the same as the task created from tf::cudaFlow::for_each.

template<typename I, typename C>
cudaTask tf::cudaFlow::for_each_index(I first, I last, I step, C callable)

applies a callable to each index in the range with the step size

Template parameters
I index type
C callable type
Parameters
first beginning index
last last index
step step size
callable the callable to apply to each element in the data array
Returns a tf::cudaTask handle

This method is equivalent to the parallel execution of the following loop on a GPU:

// step is positive [first, last)
for(auto i=first; i<last; i+=step) {
  callable(i);
}

// step is negative [first, last)
for(auto i=first; i>last; i+=step) {
  callable(i);
}

template<typename I, typename C>
void tf::cudaFlow::for_each_index(cudaTask task, I first, I last, I step, C callable)

updates parameters of a kernel task created from tf::cudaFlow::for_each_index

The type of the iterators and the callable must be the same as the task created from tf::cudaFlow::for_each_index.

template<typename I, typename O, typename C>
cudaTask tf::cudaFlow::transform(I first, I last, O output, C op)

applies a callable to a source range and stores the result in a target range

Template parameters
I input iterator type
O output iterator type
C unary operator type
Parameters
first iterator to the beginning of the input range
last iterator to the end of the input range
output iterator to the beginning of the output range
op the operator to apply to transform each element in the range
Returns a tf::cudaTask handle

This method is equivalent to the parallel execution of the following loop on a GPU:

while (first != last) {
  *output++ = callable(*first++);
}

template<typename I, typename O, typename C>
void tf::cudaFlow::transform(cudaTask task, I first, I last, O output, C c)

updates parameters of a kernel task created from tf::cudaFlow::transform

The type of the iterators and the callable must be the same as the task created from tf::cudaFlow::for_each.

template<typename I1, typename I2, typename O, typename C>
cudaTask tf::cudaFlow::transform(I1 first1, I1 last1, I2 first2, O output, C op)

creates a task to perform parallel transforms over two ranges of items

Template parameters
I1 first input iterator type
I2 second input iterator type
O output iterator type
C unary operator type
Parameters
first1 iterator to the beginning of the input range
last1 iterator to the end of the input range
first2 iterato
output iterator to the beginning of the output range
op binary operator to apply to transform each pair of items in the two input ranges
Returns cudaTask handle

This method is equivalent to the parallel execution of the following loop on a GPU:

while (first1 != last1) {
  *output++ = op(*first1++, *first2++);
}

template<typename I1, typename I2, typename O, typename C>
void tf::cudaFlow::transform(cudaTask task, I1 first1, I1 last1, I2 first2, O output, C c)

updates parameters of a kernel task created from tf::cudaFlow::transform

The type of the iterators and the callable must be the same as the task created from tf::cudaFlow::for_each.

template<typename I, typename T, typename B>
cudaTask tf::cudaFlow::reduce(I first, I last, T* result, B bop)

performs parallel reduction over a range of items

Template parameters
I input iterator type
T value type
B binary operator type
Parameters
first iterator to the beginning (inclusive)
last iterator to the end (exclusive)
result pointer to the result with an initialized value
bop binary operator to apply to reduce items
Returns a tf::cudaTask handle

This method is equivalent to the parallel execution of the following loop on a GPU:

while (first != last) {
  *result = bop(*result, *first++);
}

template<typename I, typename T, typename C>
void tf::cudaFlow::reduce(cudaTask task, I first, I last, T* result, C op)

updates parameters of a kernel task created from tf::cudaFlow::reduce

The type of the iterators, result, and callable must be the same as the task created from tf::cudaFlow::reduce.

template<typename I, typename T, typename B>
cudaTask tf::cudaFlow::uninitialized_reduce(I first, I last, T* result, B bop)

similar to tf::cudaFlow::reduce but does not assume any initial value to reduce

This method is equivalent to the parallel execution of the following loop on a GPU:

*result = *first++;  // no initial values partitipcate in the loop
while (first != last) {
  *result = op(*result, *first++);
}

template<typename I, typename T, typename C>
void tf::cudaFlow::uninitialized_reduce(cudaTask task, I first, I last, T* result, C op)

updates parameters of a kernel task created from tf::cudaFlow::uninitialized_reduce

The type of the iterators, result, and callable must be the same as the task created from tf::cudaFlow::uninitialized_reduce.

template<typename I, typename T, typename B, typename U>
cudaTask tf::cudaFlow::transform_reduce(I first, I last, T* result, B bop, U uop)

performs parallel reduction over a range of transformed items

Template parameters
I input iterator type
T value type
B binary operator type
U unary operator type
Parameters
first iterator to the beginning (inclusive)
last iterator to the end (exclusive)
result pointer to the result with an initialized value
bop binary operator to apply to reduce items
uop unary operator to transform each item before reduction
Returns a tf::cudaTask handle

This method is equivalent to the parallel execution of the following loop on a GPU:

while (first != last) {
  *result = bop(*result, uop(*first++));
}

template<typename I, typename T, typename B, typename U>
cudaTask tf::cudaFlow::transform_uninitialized_reduce(I first, I last, T* result, B bop, U uop)

similar to tf::cudaFlow::transform_reduce but does not assume any initial value to reduce

This method is equivalent to the parallel execution of the following loop on a GPU:

*result = uop(*first++);  // no initial values partitipcate in the loop
while (first != last) {
  *result = bop(*result, uop(*first++));
}

template<typename I, typename O, typename C>
cudaTask tf::cudaFlow::inclusive_scan(I first, I last, O output, C op)

creates a task to perform parallel inclusive scan over a range of items

Template parameters
I input iterator type
O output iterator type
C binary operator type
Parameters
first iterator to the beginning
last iterator to the end
output iterator to the beginning of the output
op binary operator
Returns a tf::cudaTask handle

This method is equivalent to the parallel execution of the following loop on a GPU:

for(size_t i=0; i<std::distance(first, last); i++) {
  *(output + i) = i ? op(*(first+i), *(output+i-1)) : *(first+i);
}

template<typename I, typename O, typename C>
void tf::cudaFlow::inclusive_scan(cudaTask task, I first, I last, O output, C op)

updates the parameters of a task created from tf::cudaFlow::inclusive_scan

This method is similar to tf::cudaFlow::inclusive_scan but operates on an existing task.

template<typename I, typename O, typename C>
void tf::cudaFlow::exclusive_scan(cudaTask task, I first, I last, O output, C op)

updates the parameters of a task created from tf::cudaFlow::exclusive_scan

This method is similar to tf::cudaFlow::exclusive_scan but operates on an existing task.

template<typename I, typename O, typename B, typename U>
cudaTask tf::cudaFlow::transform_inclusive_scan(I first, I last, O output, B bop, U uop)

creates a task to perform parallel inclusive scan over a range of transformed items

Template parameters
I input iterator type
O output iterator type
B binary operator type
U unary operator type
Parameters
first iterator to the beginning
last iterator to the end
output iterator to the beginning of the output
bop binary operator
uop unary operator
Returns a tf::cudaTask handle

This method is equivalent to the parallel execution of the following loop on a GPU:

for(size_t i=0; i<std::distance(first, last); i++) {
  *(output + i) = i ? op(uop(*(first+i)), *(output+i-1)) : uop(*(first+i));
}

template<typename I, typename O, typename B, typename U>
void tf::cudaFlow::transform_inclusive_scan(cudaTask task, I first, I last, O output, B bop, U uop)

updates the parameters of a task created from tf::cudaFlow::transform_inclusive_scan

This method is similar to tf::cudaFlow::transform_inclusive_scan but operates on an existing task.

template<typename I, typename O, typename B, typename U>
void tf::cudaFlow::transform_exclusive_scan(cudaTask task, I first, I last, O output, B bop, U uop)

updates the parameters of a task created from tf::cudaFlow::transform_exclusive_scan

This method is similar to tf::cudaFlow::transform_exclusive_scan but operates on an existing task.

template<typename A, typename B, typename C, typename Comp>
cudaTask tf::cudaFlow::merge(A a_first, A a_last, B b_first, B b_last, C c_first, Comp comp)

creates a task to perform parallel merge on two sorted arrays

Template parameters
A iterator type of the first input array
B iterator type of the second input array
C iterator type of the output array
Comp comparator type
Parameters
a_first iterator to the beginning of the first input array
a_last iterator to the end of the first input array
b_first iterator to the beginning of the second input array
b_last iterator to the end of the second input array
c_first iterator to the beginning of the output array
comp binary comparator
Returns a tf::cudaTask handle

Merges two sorted ranges [a_first, a_last) and [b_first, b_last) into one sorted range beginning at c_first.

A sequence is said to be sorted with respect to a comparator comp if for any iterator it pointing to the sequence and any non-negative integer n such that it + n is a valid iterator pointing to an element of the sequence, comp(*(it + n), *it) evaluates to false.

template<typename A, typename B, typename C, typename Comp>
void tf::cudaFlow::merge(cudaTask task, A a_first, A a_last, B b_first, B b_last, C c_first, Comp comp)

updates the parameters of a task created from tf::cudaFlow::merge

This method is similar to tf::cudaFlow::merge but operates on an existing task.

template<typename I, typename C>
cudaTask tf::cudaFlow::sort(I first, I last, C comp)

creates a task to perform parallel sort an array

Template parameters
I iterator type of the first input array
C comparator type
Parameters
first iterator to the beginning of the input array
last iterator to the end of the input array
comp binary comparator
Returns a tf::cudaTask handle

Sorts elements in the range [first, last) with the given comparator comp.

template<typename I, typename C>
void tf::cudaFlow::sort(cudaTask task, I first, I last, C comp)

updates the parameters of the task created from tf::cudaFlow::sort

This method is similar to tf::cudaFlow::sort but operates on an existing task.

template<typename K_it, typename V_it, typename C>
cudaTask tf::cudaFlow::sort_by_key(K_it k_first, K_it k_last, V_it v_first, C comp)

creates kernels that sort the given array

Template parameters
K_it iterator type of the key
V_it iterator type of the value
C comparator type
Parameters
k_first iterator to the beginning of the key array
k_last iterator to the end of the key array
v_first iterator to the beginning of the value array
comp binary comparator
Returns a tf::cudaTask handle

Sorts key-value elements in [k_first, k_last) and [v_first, v_first + (k_last - k_first)) into ascending key order using the given comparator comp. If i and j are any two valid iterators in [k_first, k_last) such that i precedes j, and p and q are iterators in [v_first, v_first + (k_last - k_first)) corresponding to i and j respectively, then comp(*j, *i) evaluates to false.

For example, assume:

  • keys are {1, 4, 2, 8, 5, 7}
  • values are {'a', 'b', 'c', 'd', 'e', 'f'}

After sort:

  • keys are {1, 2, 4, 5, 7, 8}
  • values are {'a', 'c', 'b', 'e', 'f', 'd'}

template<typename K_it, typename V_it, typename C>
void tf::cudaFlow::sort_by_key(cudaTask task, K_it k_first, K_it k_last, V_it v_first, C comp)

updates the parameters of a task created from tf::cudaFlow::sort_by_key

This method is similar to tf::cudaFlow::sort_by_key but operates on an existing task.

template<typename a_keys_it, typename a_vals_it, typename b_keys_it, typename b_vals_it, typename c_keys_it, typename c_vals_it, typename C>
cudaTask tf::cudaFlow::merge_by_key(a_keys_it a_keys_first, a_keys_it a_keys_last, a_vals_it a_vals_first, b_keys_it b_keys_first, b_keys_it b_keys_last, b_vals_it b_vals_first, c_keys_it c_keys_first, c_vals_it c_vals_first, C comp)

creates a task to perform parallel key-value merge

Template parameters
a_keys_it first key iterator type
a_vals_it first value iterator type
b_keys_it second key iterator type
b_vals_it second value iterator type
c_keys_it output key iterator type
c_vals_it output value iterator type
C comparator type
Parameters
a_keys_first iterator to the beginning of the first key range
a_keys_last iterator to the end of the first key range
a_vals_first iterator to the beginning of the first value range
b_keys_first iterator to the beginning of the second key range
b_keys_last iterator to the end of the second key range
b_vals_first iterator to the beginning of the second value range
c_keys_first iterator to the beginning of the output key range
c_vals_first iterator to the beginning of the output value range
comp comparator

Performs a key-value merge that copies elements from [a_keys_first, a_keys_last) and [b_keys_first, b_keys_last) into a single range, [c_keys_first, c_keys_last + (a_keys_last - a_keys_first) + (b_keys_last - b_keys_first)) such that the resulting range is in ascending key order.

At the same time, the merge copies elements from the two associated ranges [a_vals_first + (a_keys_last - a_keys_first)) and [b_vals_first + (b_keys_last - b_keys_first)) into a single range, [c_vals_first, c_vals_first + (a_keys_last - a_keys_first) + (b_keys_last - b_keys_first)) such that the resulting range is in ascending order implied by each input element's associated key.

For example, assume:

  • a_keys = {8, 1}
  • a_vals = {1, 2}
  • b_keys = {3, 7}
  • b_vals = {3, 4}

After the merge, we have:

  • c_keys = {1, 3, 7, 8}
  • c_vals = {2, 3, 4, 1}

template<typename a_keys_it, typename a_vals_it, typename b_keys_it, typename b_vals_it, typename c_keys_it, typename c_vals_it, typename C>
void tf::cudaFlow::merge_by_key(cudaTask task, a_keys_it a_keys_first, a_keys_it a_keys_last, a_vals_it a_vals_first, b_keys_it b_keys_first, b_keys_it b_keys_last, b_vals_it b_vals_first, c_keys_it c_keys_first, c_vals_it c_vals_first, C comp)

updates the parameters of a task created from tf::cudaFlow::merge_by_key

This method is similar to tf::cudaFlow::merge_by_key but operates on an existing task.

template<typename I, typename U>
cudaTask tf::cudaFlow::find_if(I first, I last, unsigned* idx, U op)

creates a task to find the index of the first element in a range

Template parameters
I input iterator type
U unary operator type
Parameters
first iterator to the beginning of the range
last iterator to the end of the range
idx pointer to the index of the found element
op unary operator which returns true for the required element

Finds the index idx of the first element in the range [first, last) such that op(*(first+idx)) is true. This is equivalent to the parallel execution of the following loop:

unsigned idx = 0;
for(; first != last; ++first, ++idx) {
  if (p(*first)) {
    return idx;
  }
}
return idx;

template<typename I, typename O>
cudaTask tf::cudaFlow::min_element(I first, I last, unsigned* idx, O op)

finds the index of the minimum element in a range

Template parameters
I input iterator type
O comparator type
Parameters
first iterator to the beginning of the range
last iterator to the end of the range
idx solution index of the minimum element
op comparison function object

The function launches kernels asynchronously to find the smallest element in the range [first, last) using the given comparator op. The function is equivalent to a parallel execution of the following loop:

if(first == last) {
  return 0;
}
auto smallest = first;
for (++first; first != last; ++first) {
  if (op(*first, *smallest)) {
    smallest = first;
  }
}
return std::distance(first, smallest);

template<typename I, typename O>
cudaTask tf::cudaFlow::max_element(I first, I last, unsigned* idx, O op)

finds the index of the maximum element in a range

Template parameters
I input iterator type
O comparator type
Parameters
first iterator to the beginning of the range
last iterator to the end of the range
idx solution index of the maximum element
op comparison function object

The function launches kernels asynchronously to find the largest element in the range [first, last) using the given comparator op. The function is equivalent to a parallel execution of the following loop:

if(first == last) {
  return 0;
}
auto largest = first;
for (++first; first != last; ++first) {
  if (op(*largest, *first)) {
    largest = first;
  }
}
return std::distance(first, largest);

template<typename C>
cudaTask tf::cudaFlow::capture(C&& callable)

constructs a subflow graph through tf::cudaFlowCapturer

Template parameters
C callable type constructible from std::function<void(tf::cudaFlowCapturer&)>
Parameters
callable the callable to construct a capture flow
Returns a tf::cudaTask handle

A captured subflow forms a sub-graph to the cudaFlow and can be used to capture custom (or third-party) kernels that cannot be directly constructed from the cudaFlow.

Example usage:

taskflow.emplace([&](tf::cudaFlow& cf){

  tf::cudaTask my_kernel = cf.kernel(my_arguments);

  // create a flow capturer to capture custom kernels
  tf::cudaTask my_subflow = cf.capture([&](tf::cudaFlowCapturer& capturer){
    capturer.on([&](cudaStream_t stream){
      invoke_custom_kernel_with_stream(stream, custom_arguments);
    });
  });

  my_kernel.precede(my_subflow);
});

template<typename C>
void tf::cudaFlow::capture(cudaTask task, C callable)

updates the captured child graph

The method is similar to tf::cudaFlow::capture but operates on a task of type tf::cudaTaskType::SUBFLOW. The new captured graph must be topologically identical to the original captured graph.